Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoporous InGaN of high In composition prepared by KOH electrochemical etching

Identifieur interne : 000857 ( Main/Repository ); précédent : 000856; suivant : 000858

Nanoporous InGaN of high In composition prepared by KOH electrochemical etching

Auteurs : RBID : Pascal:13-0363110

Descripteurs français

English descriptors

Abstract

The fabrication of porous InGaN of high In composition ∼47% using UV-assisted electrochemical etching in a diluted solution of KOH is demonstrated for the first time. In this paper, the effect of etching time on the morphology of porous InGaN was investigated using field emission scanning electron microscopy (FE-SEM). Pore size and density were found to increase with increasing etching time. In addition, the etching activity at grain boundaries became significant for longer etching periods in which more defective region at grain boundaries had been etched. The reduction in dislocation density due to the etching process was confirmed by a decreased value of the full width at half maximum (FWHM) from high resolution x-ray diffraction (HR-XRD) rocking curve measurements for all porous samples. Porous samples exhibited red-shift characteristics in photoluminescence (PL) spectra with respect to the as-grown sample due to relaxation of compressive stress. Furthermore, the PL intensity of porous samples showed stronger signals relative to the as-grown sample, which is attributed to both the reduction of dislocation density and multiple light scattering from the crystallite sidewalls. Such properties indicate the potential of porous InGaN for applications in optical and sensor devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0363110

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanoporous InGaN of high In composition prepared by KOH electrochemical etching</title>
<author>
<name sortKey="Radzali, R" uniqKey="Radzali R">R. Radzali</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Fakulty of Electrical Engineering, Universiti Teknologi MARA</s1>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Fakulty of Electrical Engineering, Universiti Teknologi MARA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zainal, N" uniqKey="Zainal N">N. Zainal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yam, F K" uniqKey="Yam F">F. K. Yam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Z" uniqKey="Hassan Z">Z. Hassan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0363110</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0363110 INIST</idno>
<idno type="RBID">Pascal:13-0363110</idno>
<idno type="wicri:Area/Main/Corpus">000430</idno>
<idno type="wicri:Area/Main/Repository">000857</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1369-8001</idno>
<title level="j" type="abbreviated">Mater. sci. semicond. process.</title>
<title level="j" type="main">Materials science in semiconductor processing</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Compressive stress</term>
<term>Crystallites</term>
<term>Dislocation density</term>
<term>Electrochemical etching</term>
<term>Field emission electron microscopy</term>
<term>Gallium nitride</term>
<term>Grain boundaries</term>
<term>High-resolution methods</term>
<term>Indium nitride</term>
<term>Light scattering</term>
<term>Microelectronic fabrication</term>
<term>Microstructure</term>
<term>Morphology</term>
<term>Multiple scattering</term>
<term>Nanoporous materials</term>
<term>Optical sensors</term>
<term>Photoluminescence</term>
<term>Pore size</term>
<term>Porous materials</term>
<term>Potassium hydroxide</term>
<term>Red shift</term>
<term>Relaxation</term>
<term>Rocking curve</term>
<term>Scanning electron microscopy</term>
<term>Spectral line shift</term>
<term>Ternary compounds</term>
<term>Ultraviolet radiation</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Gravure électrochimique</term>
<term>Rayonnement UV</term>
<term>Microstructure</term>
<term>Morphologie</term>
<term>Microscopie électronique émission champ</term>
<term>Microscopie électronique balayage</term>
<term>Dimension pore</term>
<term>Joint grain</term>
<term>Densité dislocation</term>
<term>Haute résolution</term>
<term>Diffraction RX</term>
<term>Diagramme rotation</term>
<term>Déplacement vers le rouge</term>
<term>Déplacement raie</term>
<term>Photoluminescence</term>
<term>Relaxation</term>
<term>Contrainte compression</term>
<term>Diffusion multiple</term>
<term>Diffusion lumière</term>
<term>Cristallite</term>
<term>Capteur optique</term>
<term>Matériau nanoporeux</term>
<term>Composé ternaire</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Hydroxyde de potassium</term>
<term>Matériau poreux</term>
<term>Fabrication microélectronique</term>
<term>8105R</term>
<term>6865</term>
<term>0779</term>
<term>7867</term>
<term>InGaN</term>
<term>8540H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The fabrication of porous InGaN of high In composition ∼47% using UV-assisted electrochemical etching in a diluted solution of KOH is demonstrated for the first time. In this paper, the effect of etching time on the morphology of porous InGaN was investigated using field emission scanning electron microscopy (FE-SEM). Pore size and density were found to increase with increasing etching time. In addition, the etching activity at grain boundaries became significant for longer etching periods in which more defective region at grain boundaries had been etched. The reduction in dislocation density due to the etching process was confirmed by a decreased value of the full width at half maximum (FWHM) from high resolution x-ray diffraction (HR-XRD) rocking curve measurements for all porous samples. Porous samples exhibited red-shift characteristics in photoluminescence (PL) spectra with respect to the as-grown sample due to relaxation of compressive stress. Furthermore, the PL intensity of porous samples showed stronger signals relative to the as-grown sample, which is attributed to both the reduction of dislocation density and multiple light scattering from the crystallite sidewalls. Such properties indicate the potential of porous InGaN for applications in optical and sensor devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1369-8001</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. semicond. process.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanoporous InGaN of high In composition prepared by KOH electrochemical etching</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RADZALI (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZAINAL (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YAM (F. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HASSAN (Z.)</s1>
</fA11>
<fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fakulty of Electrical Engineering, Universiti Teknologi MARA</s1>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>2051-2057</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888A</s2>
<s5>354000501052881100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0363110</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science in semiconductor processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The fabrication of porous InGaN of high In composition ∼47% using UV-assisted electrochemical etching in a diluted solution of KOH is demonstrated for the first time. In this paper, the effect of etching time on the morphology of porous InGaN was investigated using field emission scanning electron microscopy (FE-SEM). Pore size and density were found to increase with increasing etching time. In addition, the etching activity at grain boundaries became significant for longer etching periods in which more defective region at grain boundaries had been etched. The reduction in dislocation density due to the etching process was confirmed by a decreased value of the full width at half maximum (FWHM) from high resolution x-ray diffraction (HR-XRD) rocking curve measurements for all porous samples. Porous samples exhibited red-shift characteristics in photoluminescence (PL) spectra with respect to the as-grown sample due to relaxation of compressive stress. Furthermore, the PL intensity of porous samples showed stronger signals relative to the as-grown sample, which is attributed to both the reduction of dislocation density and multiple light scattering from the crystallite sidewalls. Such properties indicate the potential of porous InGaN for applications in optical and sensor devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Gravure électrochimique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrochemical etching</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Grabado electroquímico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Rayonnement UV</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique émission champ</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Field emission electron microscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dimension pore</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Pore size</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dimensión poro</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Haute résolution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>High-resolution methods</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>XRD</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diagramme rotation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Rocking curve</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Diagrama rotación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Red shift</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Relaxation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Relaxation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Contrainte compression</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Compressive stress</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Tensión compresión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffusion multiple</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Multiple scattering</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Diffusion lumière</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Light scattering</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Cristallite</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Crystallites</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Capteur optique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Optical sensors</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Matériau nanoporeux</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Nanoporous materials</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Hydroxyde de potassium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Potassium hydroxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Potasio hidróxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8105R</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>0779</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000857 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000857 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0363110
   |texte=   Nanoporous InGaN of high In composition prepared by KOH electrochemical etching
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024